IN THE NAME OF GOD

Fig. 3.13 Some popular ICU ventilators based on the intermittent positive pressure ventilation (IPPV) principle.

Mechanical Ventilation

By dr jalal saem MD

Introduction

Mechanical ventilation is one important part of care of many critically ill patients especially in patients with respiratory failure. It is mostly provided inside the hospital, especially inside the ICU, but it is also provided at the side outside the ICU and outside the hospital

It is important to know and understand different mechanical ventilation modes in order to match breath delivery to specific clinical application and patient needs.

Modes of mechanical ventilation can be classified as totally or partially ventilator controlled.

NEGATIVE PRESSURE VENTILATION

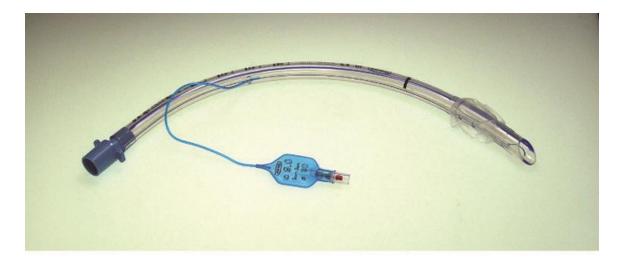

(a)

Fig. 3.15 a) An iron lung, b) A cuirass ventilator.

(a) Poumon artificiel, Wikimedia Commons, accessed 6 October 2016, https://commons.wikimedia.org/wiki/ File:Poumon_artificiel.jpg This image is in the public domain and thus free of any copyright restrictions. This media comes from the Centers for Disease Control and Prevention's Public Health Image Library.

POSITIVE PRESSURE VENTILATION

•Although positive-pressure mechanical ventilation is usually applied through an endotracheal tube or a tracheotomy, it also may be delivered noninvasively to the patient's mouth, nose, or through helmets.

VENTILATORS

Fig. 3.13 Some popular ICU ventilators based on the intermittent positive pressure ventilation (IPPV) principle.

Control System of Respiration

- Brain sensors, which are near the medulla, will sense the level of CO2 by knowing the pH of the blood that flows through the brain. Sensors in the aortic arch and carotid artery will sense the level of O2 and CO2 in the blood.
- The brain decides to either increase or decrease the inspiratory rate or the depth of breathing.
- The brain stimulates the respiratory center through the nerves for the respiratory muscles (diaphragm and intercostal muscles) to move.
- The diaphragm and the intercostal muscles move to expand the lungs and the alveoli inside the lungs.

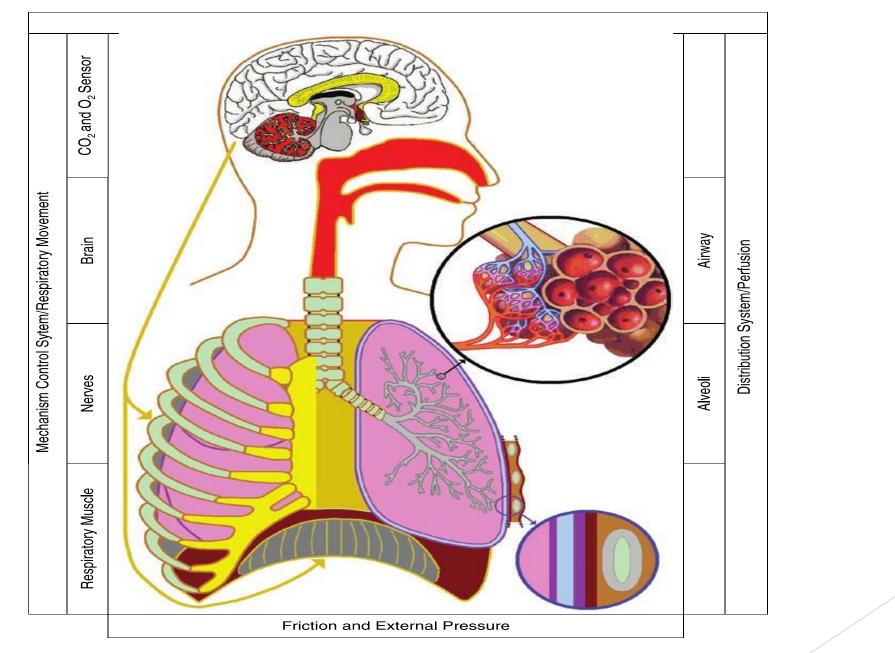


Fig. 2.3 Control system and respiratory anatomy

Distribution System/Perfusion

- On inspiration, fresh air goes into the upper airway then into the lower airway.
- Fresh air goes into the alveoli, so gas exchange with the blood occurs.
- Gas exchange occurs when O2 goes into the blood cell and CO2 from the blood
- goes into the alveoli.
- On expiration, used air goes out of the alveoli.
- Used air goes out through the lower airway and the upper airway.

MEDICAL VENTILATOR SYSTEM BASICS: A CLINICAL GUIDE

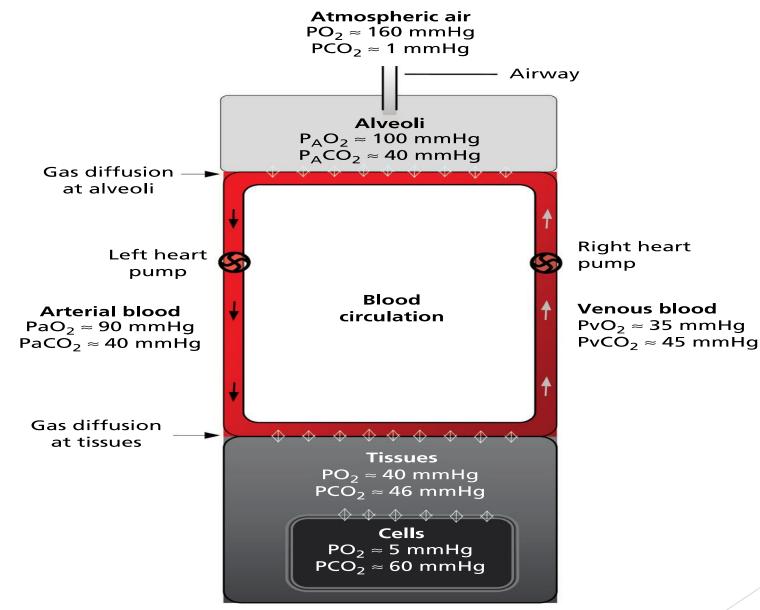


Fig. 3.6 Diagram of the entire respiration process.

ventilatory support

- (1) impairs the capacity of the respiratory muscles to generate sufficient Pmus, (Pmus = Pres + Pel)
- (2) increases the ventilatory requirements above the muscle capacity,
- (3) increases the workload associated with the act of breathing.

Clinical conditions often requiring mechanical ventilation

Acute pulmonary parenchymal disease

Pneumonia - infectious, aspiration, inhalation injury Acute respiratory distress syndrome

 Cardiogenic pulmonary edema

Acute myocardial infarction Cardiomyopathy Intravascular volume overload of any cause

• Airways disease

Exacerbation of chronic obstructive pulmonary disease Acute, severe asthma

- Primary ventilatory failure
 Guillain-Barre syndrome
 Myasthenia gravis
 Drug overdose
 Chest wall disease
- Systemic illness
 Shock
 Sepsis
- Miscellaneous
 Intraoperative (general

anesthesia)

Chest trauma

Abnormalities <u>suggestive</u> of the need for mechanical ventilation

Loss of ventilatory reserve

- Respiratory rate>35 breaths/min
- Tidal volume<5 mL/kg
- Vital capacity<10 mL/kg
- Negative inspiratory force weaker than -25 cmH20
- Minute ventilation<10
 L/min
- Rise in PCO2>10 mmHg

Refractory hypoxemia

- Alveolar-arterial gradient (FiO2 = 1.0)>450
- PaO2/PAO2<0.15
 - PaO2 with supplemental O2<55 mmHg

A Breath Sequence

Breath Initiation (Trigger Variable)

Breath Delivery Target (Limit)

Cycling to Expiration (Cycle Variable)

Expiration (Baseline Variable)

(1) the trigger variable (what initiates the breath), (2) the limit variable (the algorithm that governs positive pressure delivery), and (3) the cycle variable (what terminates the inspiratory phase).

Various Types of Breath Delivery Based on Flow Control Target

- Volume-Controlled Breath Delivery
- Pressure-Controlled Breath Delivery
- Pressure Support Breath Delivery
- ► CPAP

Volume-Controlled Breath Delivery

Table 3.1 Advantages and disadvantages of volume-controlled ventilation

Advantages	Disadvantages
 Tidal volume of the lungs is more constant and safer from the risk of volutrauma 	- Peak pressure is not always stable, which depends on the changes of airway resistance and needs to be stabilized by the
 Minute volume (MV) is constant with the same 	 pressure alarm Peak pressure is not always stable, which depends also on the lung compliance and that has the possibility of having risk of heretrowers. Decense of this this needs to be stabilized by the
respiratory rate to stabilize the removal of CO ₂	 barotrauma. Because of this, this needs to be stabilized by the pressure alarm Inspiratory flow demand has already been set with the tidal
	volume setting and inspiratory time (and plateau time)

Respond to pt trigger

Table 3.11 Respond from ventilator in patient trigger based on ventilation modes

	Breath					
	variety	Ventilation mode	Respond to patient trigger			
PEEP	Volume-	(Full) volume controlled	Patient trigger is ignored			
controlled breath Pressure		(Assist) volume controlled	Volume-controlled breath is given			
	breath	Volume SIMV	Volume-controlled breath is given in			
		assist period				
		Pressure support is given in spontaneous				
	support breath		period			
Pr		Pressure support ventilation	Pressure support breath is given			
		Pressure SIMV	Pressure support is given in spontaneous			
			period			
	Pressure-		Pressure-controlled breath is given in			
	controlled		assist period			
	breath	(Assist) pressure controlled	Pressure-controlled breath is given			
		(Full) pressure controlled	Patient trigger is ignored			

Volume control : flow controlled – volume cycled

Pressure control : pressure controlled – time cycled

Pressure support : pressure controlled - flow cycled

Type of Breath Based on Breath Initiation Source

Mandatory Breath

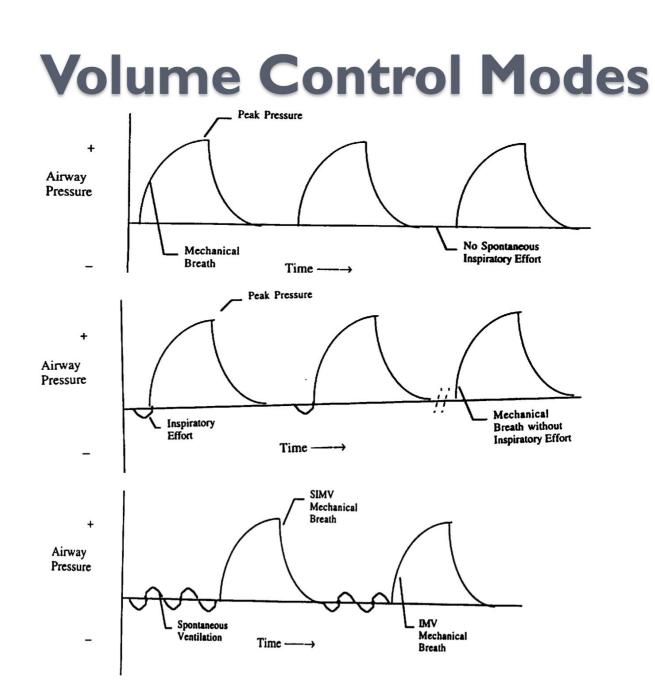
- Mandatory breath is totally controlled by the ventilator which is ventilator triggering by a preset respiratory rate.
- Breath delivery target is volume controlled or pressure controlled.
- Cycle of breathing is determined by inspiratory time.

Assisted Breath

- Assisted breath consists of both mandatory breath and spontaneous breathing. In assisted breath, trigger sensitivity is activated. When patient triggers the ventilator (spontaneous breathing), it will deliver breath as mandatory breath because it delivers the preset values.
- Breath delivery target is volume controlled or pressure controlled. And cycle of breathing is determined by inspiratory time

Spontaneous Breathing

Spontaneous breathing is a breath from the patient himself


TOTAL (FULL) VENTILATORY SUPPORT volume controlled

CONTROLLED MECHANICAL VENTILATION. CMV. (flow-limited controlled mechanical ventilation [CMV]) or pressure (pressurelimited controlled ventilation [PCV])

ASSISTED MECHANICAL VENTILATION . AMV . (inspiratory time, expiratory time, duration, and ratio of inspiratory time to total breath cycle duration), and level of assistance

Assist/Control Mechanical Ventilation . A/C . The patient is allowed to set the respiratory rate by activating the inspiratory trigger function

- Intermittent positive pressure ventilation . IPPV .
- Intermittent Mandatory Ventilation . IMV .
- Synchronized Intermittent Mandatory Ventilation . SIMV .

Pressure-Controlled Breath Delivery

Table 3.5 Advantages and disadvantages of pressure-controlled ventilation

Advantages	Disadvantages
– Peak pressure is more constant even lung	– Tidal volume change depends on changes
compliance is changing and so is safer from	of lung compliance which gives a
the risk of barotrauma	possible risk of volutrauma that needed to
– Inspiratory flow demand is fulfilled because of	be limited by volume alarm
regulated inspiratory flow \rightarrow improve gas	– Minute volume (MV) change depends on
distribution \rightarrow inflate collapsed alveoli	changes of tidal volume with the same
	respiratory rate, which causes unstable
	removal of CO ₂

PRESSURE CONTRLLED VENTILATION

BIPHASIC POSITVE AIRWAY PRESSURE (BIPAP)

PARTIALY(ASSIST) VENTILATORY SUPPORT

- Pressure Support Ventilation
- SPONTANEOUS VENTILATION
- POSITIVE END-EXPIRATORY PRESSURE
- **CONTINUOUS POSITIVE AIRWAY PRESSURE**

Pressure Support Breath Delivery

Table 3.8 Advantages and disadvantages of pressure support breath delivery

Advantages	Disadvantages	
– Peak pressure support is more constant	– Tidal volume changes depend on changes of	
even respiratory drive/muscles and lung	lung complianceand respiratory drive which	
compliance changes and so safe from the	cause possibility of having risk of volutrauma	
risk of barotrauma	that needs to be restricted by volume alarm	
– Inspiratory flow demand is fulfilled	– Minute volume (MV) changes depend on	
because of adjusted/regulated inspiratory	changes of tidal volume at the same respirator	y \
flow \rightarrow improve gas	rate which cause unstable removal of CO ₂	1
distribution \rightarrow inflate collapsed alveoli	– Inspiratory time (cycling) is determined by	
	peak inspiratory flow and so with lower flow	
	(respiratory muscles are weak), and then	
	inspiratory time is shorter (volume decreases)	

CPAP & PEEP

- A constant level of positive pressure applied to a spontaneous breathing cycle is termed continuous positive airway pressure (CPAP).
- Positive end-expiratory pressure (PEEP) is the positive pressure applied at the end of expiration during positive- pressure mechanical ventilation

PRESSURE REGULATED VOLUME CONTROL (PRVC) (PCVG) volume assured pressure support (VAPSV)

ADAPTIVE SUPPORTIVE VENTILATION(ASV)

Proportional Assisted Ventilation (PAV)

AIRWAY PRESSURE RELESASE VENTILATION(APRV)

Neurally Adjusted Ventilatory Assist

VENTILATOR SETUP

► MODE ► VT ► RR ► FIO2 ► PEEP ► PSV

P MAX
FIOW
TRIGGER
I/E RATIO
T. INSP

VENTILATOR SETUP

► ABG

► PAO2

► PACO2

► PH

TV RR LOW MV **HIGH PR** LOW PR **FIGHT ALARMS** sedation

VENTILATOR SETUP

OXYGENATION GOAL: **PaO₂ 55 to 80 mm Hg or SpO₂ 88% to 95%** Use incremental FiO₂/PEEP combinations below to achieve goal:

FiO ₂	0.3	0.4	0.4	0.5	0.5	0.6	0.7	0.7
PEEP	5	5	8	8	10	10	10	12
FiO ₂	0.7	0.8	0.9	0.9	0.9	1.0	1.0	1.0
PEEP	14	14	14	16	18	20	22	24

WEANING

Objectives of mechanical ventilation

Clinical objectives

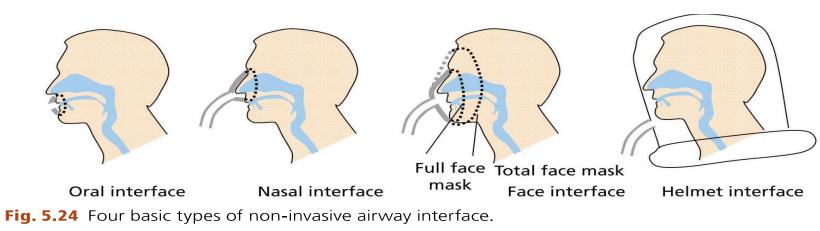
- Reverse hypoxemia
- Reverse acute respiratory acidosis
- Relieve respiratory distress
- Prevent or reverse atelectasis
- Reverse ventilatory muscle fatigue
- Permit sedation and/or neuromuscular blockade
- Decrease systemic or myocardial oxygen consumption
- Stabilize the chest wall

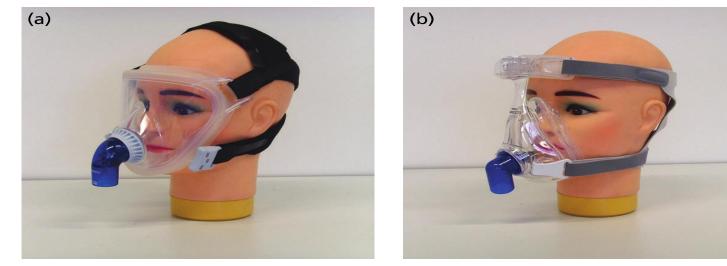
WEANING

SIMV
BIPAP
PSV
CPAP

► T-PIECE TRIAL

STABLE HEMODYNAMIC ACCEPTABLE ABG NO FEFVER NO INFECTION NO VASOPRESSORS GCS SECRETION GAG ERFLEX


ARDS


- Intermittent positive-pressure mechanical ventilation is the gold standard for assisting patients with acute respiratory failure.
- Low vt
- ► Low fio2
- High peep
- Permisive hypercapnia
- Sedation & mr
- ► other

ARDS

Acute respiratory distress syndrome (ARDS) is an inflammatory response of the lung with acute onset and presence of bilateral infiltrates on chest radiography. ARDS is characterized by a reduction in functional residual capacity and static compliance. The correct setting of mechanical ventilation in ARDS is of paramount importance to minimize ventilator-induced lung injury

Non-invasive VENTILATION

Fig. 5.25 Total face mask (left) and full face mask (right) from Philips Respironics.

NONINVASIVE VENTILATION

- **Stable Hypercapnic Chronic Obstructive Pulmonary Disease**
- Correction of Hypoventilation
- Respiratory Muscle Unloading
- Reset of the Respiratory Centers
- Cardiovascular dx
- Acute COPD Exacerbations